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Abstract. Explicit expressions for the Temperley-LiebMartin algebras, i.e. the quotients of 
the Hecke algebra that admit only representations companding to Young diagram with a 
given maximum number of columm (or rows), are obtained, making explicit use of the Hecke 
algebra representation theory. Similar techniques are used to mmsShllct the algebras whose 
representations do not contain rectangular subdiagrams of a given size. 

1. Introduction 

The Temperley-Lieb algebra plays an important role in many areas of mathematics and 
physics. It grew out of a study of the relations between the percolation and colouring 
problem [ l ] ,  and has since been used in studies of integrable models in statistical 
mechanics [2 ] ,  von Neumann algebras [3], representations of braid groups, and knot and 
link invariants [MI. 

The Temperley-Lieb algebra TL,(q) is known to be a quotient of the Hecke algebra 
H,(q) to an algebra, whose irreducible representations are classified by Young diagrams 
with at most two columns or, equivalently, two rows [4,5]. H.(q) is defined as a free unital 
associative algebra generated by gl, . . . , g,-l subject to the relations 

g? = (4 - R ? i  + q i = 1 , 2 .  ..., n -  1 

gigi+lgi=gi+lgigi+l i = 1 , 2 ,  ..., n - 2  ( 1 )  
. gigj =gjgi if li - j l  > 2 

where q is a complex number. It may be considered as a deformation of the group algebra 
CS. of the symmetric group S,. In the limit q = 1 the gi are identified with transpositions 
( i .  i + 1 ) .  For generic values of q the representation theory of If&) closely resembles 
the representation theory of S,. In particular, irreducible representations of H.(q) can be 
labelled by Young diagrams with It boxes [7,8]. 

To obtain the defining relations of TL.(q) we firs; define 

(2) ~. ~ 

gj + 1 
45 

e, = - 

rewrite the first and third of relations ( 1 )  in terms of the generators ej 
e; = (q”’ + q-’/’)ej (3) 

eiej = ejei if li - j l  > 2 (4) 
t Permanent address: Department of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel. 
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and, instead of the second of relations (1) impose the condition 
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ejejAlej - ej = 0. (5)  
Thus, the Temperley-Lieb algebra TL,(q) is the free associative algebra generated by 
e l ,  ... en-,, subject to the relations (3),(4), and (5). 

The Temperley-Lieb algebra has been applied to the analysis of integrable models 
with the quantum group U,(su(Z)) symmetry [9]. In order to analyse integrable models 
such as spin chains or diffusion-reaction processes [lo], which have U,(su(N)) symmetry, 
one has to consider multi-column (or multi-row) generalizations of the Temperley-Lieb 
algebra, that have recently been introduced by Martin [Z] .  These Temperley-LiebMartin 
algebras are defined as the quotients of the Hecke algebra H,(q) that admit only irreducible 
representations described by Young diagrams with at most N columns. Such an algebra 
for N = 3 was also considered by Sochen [Ill. Another generalization of the Temperley- 
Lieb algebra, that excludes Young diagrams containing a rectangular Young subdiagram with 
specified numbers of both rows and columns, was considered by Martin and Rittenberg [12]. 
In this paper we give a simple derivation of these algebras, making explicit use of the 
representation theory of the Hecke algebra H.(q), and, in particular, of the properties of 
the Murphy operators [13,14]. We find that with a certain choice of generators the defining 
relations of the multi-column Temperley-Lieb algebra are obtained as higher-order iterates 
of the Temperley-Lieb braiding relation, equation (5). 

Our paper is organized as follows. In section 2 we describe some elements of the 
representation theory of Hecke algebras, focusing on the construction of projection operators. 
In section 3 we state and prove the main result concerning the structure of the Temperley- 
Liet-Martin algebras. In section 4 we discuss the stmcture of a double quotient of the 
Hecke algebra which leads to an algebra whose Young diagrams do not contain a rectangle 
of a given shape. In section 5 we make some conchding remarks. 

We assume that q is a real positive number. 

2. Projection operators in the Hecke algebra Hn(q) 

In this section we define and discuss. the basic properties of certain projection operators 
in the Hecke algebra H.(q). We start, however, by recalling some elementary facts about 
the Young diagrams. We denote by r. = [A,, A,, . . . , Ak] the Young diagram of n boxes 
arranged into k rows of respective lengths hl > A2 > . . . > Ax. 

Defulition 2.1. The Young diagram r. = [AI, A*, . . . , Ak] contains the Young diagram 
r:, [A;, q, . . . , A;] if k > & and Ai > A;, i = 1.2, . . . , &. 

The following lemma and corollary are immediate consequences of the Littlewood- 
Richardson rule for the outer product [U]. 

Lemma 2.2. Any Young diagram obtained as the outer product of two Young diagrams r. 
and rm contains both. 

Corollary 2.3. A Young diagram with no more than & columns (rows) could only be 
obtained as a direct product of Young diagrams with no more than & columns (rows). 

Both lemma 2.2 and corollary 2.3 will be used in the proof of the main result in section 3. 
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Definition 2.4. The q-content of the j th  box in the ith row of a Young diagram is q[j -i],, 
where [k], = (qk - l ) / ( q  - 1) = 1 + q  +... + $ - I .  

In the analysis of the structure of Hecke algebras an important role is played by the 
Murphy operators [13,141 L,, given by 

1 1 
4 4 

+...+- gig2.. . g,-zg,-~g,-z ' . . g2g1 

L ,  = gp-1+ -g,-Zg,-lgp-z + ~ g p - 3 ~ P - 2 g p - l g p - Z g p - 3  

1 
p = 2,3,  . . . , n. qP-2 

Any two Murphy operators commute with one another. The symmetric polynomials in the 
Murphy operators span the centre of the Hecke algebra. A state labelled by the sequence 
of Young diagrams rz c r3 c . . . c I', is an eigenstate of all the Murphy operators 
Lz, L3, . . . , L.. The eigenvalue of Li corresponding to this state is the q-content of the 
box that has been added to ri-1 to obtain Pi. 

The fundamental invariant of H,(q), E&, Li, has been shown to fully characterize its 
irreducible representations 1161, and could therefore be used to construct projection operators 
onto subspaces consisting of irreducible representations with any desired specification. 
However, using the properties of the Murphy operators such projection operators can be 
written down in an even simpler form. This is particularly.simple for the one-dimensional 
single row [a] or single column [l"] irreducible representations. Take [n] for example 
and note that it is the only irreducible representation of H,(q) for which the box at 
position (2, 1) does not exist. The q-content of this box is -1. Thus, for all irreducible 
representations but [n] one of the Murphy operators must assume the eigenvalue -1. 
Therefore, En = nYz2(Li + 1) vanishes on all irreducible representations except [n]. 
The eigenvalues of the Murphy operators corresponding to the various boxes of [n] are 
q. q + q2, q + q2 + q 3 ,  . . . , q + q2 + . . . + qn-', respectively, so that the operator en 
assumes the value [n],! where [ i  + I],! = [i],![i + 114. Thus, the normalized projection 
operator on the single row irreducible representation of H.(q) is 

This projection operator can be written as a sum over the n !  reduced words that furnish a 
basis of H,(q). Explicitly the first two operators come out as 

1 
c2 = -U +gd 

r21, 
1 

[31q. 
c3 = -$1+g1 +gz+g1gz+g2g1 +g1gzg1). 

Since C, is manifestly symmetric in the Murphy operators, it is central in H,(q). Being 
a projection operator, it is idempotent. One important consequence is that for an arbitrary 
polynomial F(g1, gz, 

(6) 
is satisfied in any irreducible representation of H,(q). This follows from the fact that on the 
single-row irreducible representation all gi are represented by q ,  and on all other irreducible 
representations both sides of (6) vanish. 

For our construction of quotients of the Hecke algebra H,(q) it is necessary to consider 
the Hecke subalgebras generated by sets of consecutive generators gj, & + I ,  . . . , gi+e-Z, 

in the generators of H.(q) the identity 

F(g11 g2, . . . , gn-1)C. = F(q,  q,  . t. 9 4)C" 
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which are isomorphic with H t ( q ) .  We shall denote such algebras by H j ) ( q ) ,  where the 
superscript specifies the generator with the lowest index. Within those subalgebras the 
Murphy operators are 
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1 1 
4 

L:) = gj+i-2 + -gj+i-Sgj+i-~gj+i-3 + . ’ + qj-zgigi+l. ’ .gj+i-2 ’ ‘ .gi+lgi 

j =2,3, ..., e 
and the projection operator onto’the one-row irreducible representation of H f ) ( q )  is 

We often suppr&s the superscript when the lowest generator is gl .  

use the idempotency of Cj+l and the fact that it commutes with Lj+2 to note that 
We now derive a recurrence relation for the single-row projection operators. First we 

Next, using equation (6) we obtain 

ci+~Li+&+~ = Ci+lgi+iCi+i[i + 114 
and 

(2) 

From equations (9) and (10) it follows that 
Ci+lLj+Ici+l = Ci+1gi+ICi+i[ilq. 

Substitution of (11) in (7) and use of (8) yields 

We can now renormalize the projection operators C::), and define 

Finally, we can use the automorphism gj+k H gj+i-k, k = 0,1,. . . , i ,  in H;$L(q), 
under which C$i is invariant, to show that 

(15) eF)eF) p - p = ,,FJeQ) (i) 
J J+I j J J+I J J+I  - e j + l .  
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Equations (15) ensure that the e?’) can be equivalently defined by interchanging indices 
j with j + 1 on the right hand side of (14). We also note that equation (15) is of the same 
form as the second in (1) written in terms of the generators ei (2). Indeed, for i =‘ I ,  
e:) = ej and thus (15) together with (13) and (4) are the defining relations of the Hecke 

k = 1, . . . , i - 1. Hence, the e:) do not generate any Hecke algebra for i > 1. But for 
i = n - 2 there are only two elements e?-’’. er-’) and thus they generate the Hecke 
algebra H&) where H is determined by the equation [[Z]]i = [ [n  - 1]IP. 

algebra H,(q). One should note, however, that for general i ,  ey’ey2k+l # (9 if . 

3. The Temperley-Lieb-Martin algebras 

In this section we derive the algebraic relations defining the quotient of the Hecke algebra 
corresponding to irrducible representations with at most e columns. To do so we start from 
He+l(q), the lowest-order Hecke algebra for which such restriction is meaningful. Since 
the only irreducible representation of He+~(q) on which e?’ does not vanish is [e + I], the 
desired quotient~corresponds to ef“ = 0. 

Theorem3.1. In the Hecke algebra H,,(q), let 4’. where e = 1,2,. . . , n - 1 and 
i = 1,2, . . . , n - e, be given by (12). Then the following are equivalent: 
(i)  er)=^, i = l , ~  ,..., n - t .  
(ii) H,(q) is restricted to having irreducible representations labelled by Young diagrams 

with at most e columns. 

We can now state the main result of this paper. 

PmoJ The Hecke algebra H&), n e + 1, can be written as a direct sum of the tbree 
subalgebras H)’)(q), H$l(q) and H:-Tt+l(q), where the first and/or the last could be 
the trivial algebra Hl(q) .  Therefore, the irreducible representations of H,(q) are direct 
products of the irreducible repkentations of the three Hecke subdgebras specified. To 
show that (i) follows from (ii) we note that if only irreducible representations with at most 
e columns are allowed for H,(q), then by corollary 2.3 only such irreducible representations 
are allowed for each of the subalgebras. In particular, for the H$, (q) algebra the irreducible 
representation [e+ I] is excluded. Consequently, e:) inevitably vanishes (cf equation (12)). 

To show that (ii) follows from (i) we note that from (i) tr(ey’) = 0. Recall that in 
He+~(q) tr(e?’) vanishes on all irreducible representations with not more than e columns 
and is positive on the irreducible representation [e+l]. Given any irreducible representation 
r, of H,(q), n > t + 1, the trace of e?) can be evaluated recursively via [I71 

where rn-I c~r, means that r.-I is one of the Young diagrams obtained by eliminating a 
box in r,. Now, if r. consists of more th& e columns it means that the iterative process 
carries the positive contribution initially due to tr(e?))ft+l,, and that cannot be annulled since 
there are no negative contributions. Hence, for all but irreducible representations with at 

0 

Noting that for t = 2 the first statement of theorem 3.1 is simply the relation (5) that 

most e columns &(e:)) > 0. 

defines the Temperley-Lieb algebra we have the following well known corollary. 
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Corollary 3.2 ([4,5]). The Temperley-Lieb algebra TL.(q) is a quotient of the Hecke 
algebra H. (4) admitting only irreducible representations corresponding to Young diagrams 
with not more than two columns. 

T BrzeziriSki and J Katriel 

Using equation (3) it is a simple matter to reduce the condition obtained for l = 3, i.e. 
e,”’ = 0, to the form derived by Sochen in [ll]. 

Remark 3.3. From the proof of theorem 3.1 it follows that the requirement ey’ = 0 is 
sufficient to eliminate all Young diagrams with more than l columns. Once this is established 
it is a simple matter to show that ey)  = 0 for all i < n - 8 .  This can be done either by 
invoking the other half of theorem 3.1 (the fact that e:) = 0 is necessary for the irreducible 
representations to contain at most e columns), or by noting that tr(ey’) = tr(& [17], and 
that e?’ is central in Hf’(q), i.e. within any irreducible representation it is a multiple of 
the unit matrix. 

Trivial modifications yield the multi-row Temperley-Lieb algebra. To be precise, we 
introduce the projection operator 

that annihilates all Young diagrams with i + 1 boxes in which the box (2, l), whose q- 
content is 4, is present. Thus, the sole surviving Young diagram is the singlecolumn (i.e. 
(i + 1)-row) diagram [l”’]. Instead of (12) we obtain 

4(i) = [[i + l]]fiREl . 
In particular, for i = 1 we obtain 

f i = q + ( q - B i ) .  

Equations (13) and (14) remain unchanged in form, except that 
theorem 3.1 ‘columns’ should be replaced by ‘rows’. 

replaces e:). In 

4. Elimination of reetangular subdiagrams 

In this section we define the quotient of the Hecke algebra that corresponds to Young 
diagrams which do not contain a rectangular subdiagram consisting of e, rows each of length 
eh. We start by considering the lowest order Hecke algebra for which such a restriction is 
meaningful, H e , ~ ( q ) .  Let 

, , , 1  , , , ,  , ,, 
nffi (Li - 4[ehlq) 

Ceh = 
H~L, n j ~ ~  (q1.j - i14 - dehlq) 

p!” 1 1 (Li - qt-eylq) 

~-I;L, l-12, ’(q[i - i14 -q[-eVlq) 

be the projection operator that eliminates diagrams in which the top box in the column 
eh + 1 is occupied, and 

iGv = 

be the projection operator that eliminates diagrams in which the leftmost box in the row 
e,+ 1 is occupied. The prime in both expressions means that the product in the denominator 
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excludes the factor i = j =~ 1. Ceh and Re, are normalized to unity on the rectangular 
diagram [et]. 

Since RGCeh vanishes on all irreducible  representations except [e?], the quotient of 
interest is specified by setting Qe,,e, = ReVCeh = 0. 

If an irreducible representation of H&), n > e&, does not contain the rectangular 
subdiagram [ e t ]  we find that 

in all subalgebras H& i = 1,2, . . . , n + 1 - eh&. Here R i )  and Cj:) are obtained from 
Rev and Cth, respectively, by replacing Lj by L;). 

On the other hand, if Q& = 0 then in all irreducible representations of H&), 
n > the,, tr(Q::;e,) = 0. In an irreducible representation r, that contains the rectangle [et]  
tr(Q:$) > 0, since the recursive evaluation of this trace carries the positive contribution of 
tr(Q&)ce;l. Recall that [e?] is the only irreducible representation of HehtV(q) for which 
tr(Q&) # 0. Therefore if we require that Qgle, = 0 no representation containing [et]  is 
allowed. 

Thus, the vanishing of all Q&". i = 1,2, . . . , n + 1 -&ev, is a necessary and sufficient 
condition for the exclusion of irreducible representations that contain the rectangular 
subdiagram [e?]. 

As an example we consider the exclusion of 12'1, i.e. = e, = 2, in H4(q). Here 

In fact, L2 can only assume the eigenvalues 4 and -1,  corresponding to the boxes (1 .2 )  and 
(2, 1 ) .  respectively. Therefore, the factors containing L2 in the numerator do not annihilate 
any Young diagram and appear to be superlluous. To write a normalized projector in a 
simpler form we define the projectors Q, and Q,, onto the two vectors spanning the [2,  21 
irreducible representation, i.e. [21[2, 1112,2] and [ l ,  11[2,1][2,2],  respectively. Thus 

(Lz + - 4 - q2)(L4 - 4 - qZ)(L4 + ~ ~~ 1 + :) 
Q3 = 

( 1  + 4)(-1 - 4 - 42x-4 - q2)(1 + +I 

(Lz - 4 w 3  + 1 + 3 ( L 4  - 4 - 4 2 w 4  + 1 + +) 

( - 1  - 4167 + 1 + $-4 - q2)(1 + 

and 

Qn = 

Clearly, Q, + Q. is equal to unity within the irreducible representation [ 2 , 2 ] ,  and vanishes 
otherwise. 

In [I21 a different condition was proposed to exclude the [2, 21 irreducible representation 
of H&). Namely. it was required that the operator 

Q,, = ~ I ~ ~ ~ Z ( [ P I I ~  - eM[2Ilq - 4 )  I 

should vanish. It can easily be checked, however, that Q,, is not a projection operator and 
furthermore it is nilpotent, i.e. (em,)' = 0. 
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5. Conclusions 

In this paper we have presented a simple method for constructing quotients of the Hecke 
algebra H,(q), the irreducible representations of which are labelled by Young diagrams with 
suitably restricted shapes. Our construction is based on the use of the Murphy operators in 
Hn(q). In particular, we have shown that the &column Temperley-LiebMartin algebra is 
defined by the relations 

(16) j = 1, , . . , ,, - e  
which have a form identical with the Temperley-Lieb relations (5). 

The restriction of Hecke algebras to representations corresponding to Young diagrams of 
a given shape have been investigated in [12] in order to analyse the spectra of Hamiltonians 
of integrable models with U,(su(N, M)) symmetry such as the Perk-Schultz quantum 
chains, and also to analyse a certain class of diffusion-reaction processes [lo]. Other 
restrictions were used in classification of conformal field theories [ll]. We believe that our 
construction and, in particular, the simple form (16) of the relations defining the appropriate 
quotients can be used in further analysis of such models. 
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